wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos a . cos 2a . cos 3a ............... cos999a = 12x.Where a = 2π1999.Find the value of x.


__

Open in App
Solution

Given series cosa .cos 2a . cos 3a . . . . . . cos 999 is

Let p = cos a cos 2a cos 3a . . . . . . cos 999a

To proceed any cosine product series, we should multiple and divide by same angle sine function and use the formula sin 2a = 2 sin a . cos a

Let Q = sina .sin2a . sin 3a . . . . . . sin 999a

P × Q = (sin a .cos a) . (sin 2a . cos 2a) . - - - - - . (sin 999a. cos 999a)multiply both side by 2999

2999 P × Q = (2 sina .cos a) . (2 sin 2a .cos 2a) . - - - - - - (2 sin 999a .cos 999a)

2999 PQ = sin 2a .sin 4a . sin 8a . - - - - - - sin 1998a - - - - - - (1)

Let's take RHS here.

sin 2a . sin 4a . sin 8a . - - - - - - sin 998 .sin 1000a . 1002a - - - - - - sin 1998a

After sin 998a,

sin 1000a = sin 1000 ×2π1999 = -sin(2π1000×2π1999) {a=2π1999}

= -sin(2π(110001999))

= -sin(2π9991999)

= -sin(999.2π1999) = -sin 999a

Similarly sin 10002a = sin 1002 × -sin(2π1002×2π1999)

=sin{2π(110021999)}

= -sin2a × 9971999 = -sin 997a

sin 1004a = -sin 995a

"

"

sin 1998a = -sin a

When we multiply the terms after sin 998a we will get all the odd angles terms sin a × sin 3a × sin 5a . . . . . sin 999a

RHS

= sin 2a .sin 4a .sin 8a . . . . . . sin 998a {(-sin 999a) (-sin 997a) (-sin 995a) . . . . . . (-sin a)}

(-) sign will be 998 times after multiplication 998 times it becomes positive (+ 1)

= sin a .sin 2a . sin 3a . sin 4a . sin 5a . . . . . sin 999a

= Q

From equation 1

2999 PQ = Q

p = 12999

p = 12x

x = 999


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon