wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos A+cos B=12 and sin A+sin B=14, prove that tanA+B2=12.

Open in App
Solution

Given:
sin A + sin B = 14 .....(i)
cos A + cos B =12 .....(ii)

Dividing (i) by (ii):

sinA+sinBcosA+cosB=14122sinA+B2cosA-B22cosA+B2cosA-B2 =12 sinA+sinB=2sinA+B2cosA-B2 and cosA+cosB=2cosA+B2cosA-B2sinA+B2cosA-B2cosA+B2cosA-B2=12tanA+B2=12Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon