wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosA+cosB=4sin2(C2),prove that sides a,b,c of the triangle ABC are in A.P.

Open in App
Solution

cosA+cosB=4sin2(C2)

2cosA+B2cosAB2=4sin2(C2)

A+B+C=πA+B=πC

cosπC2cosAB2=2sin2(C2)

sinC2cosAB2=2sin2(C2)

cosAB2=2sin(C2)

cosC2cosAB2=2sin(C2)cosC2

cos(π(A+B)2)cosAB2=sinC

2sinA+B2cosAB2=sinC

sinA+sinB=2sinC

sinAa=sinBb=sinCc=k

sinA=ak,sinB=bk,sinC=ck

ak+bk=2(ck)

a+b=2c

Therefore the sides of triangle a,b,c are in A.P.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon