If cosA+cosB=12 and sinA+sinB=14, prove that: tan(A+B2)=12
If cos(A-B) = 3/5 and tanA*tanB = 2 then
(a) cosA*cosB= 1/5 (c) cos(A+B)= -1/5
(b) sinA*sinB= 2/5 (d) sinA*sinB=4/5
Prove that: (i) sinA+sin3AcosA−cos3A=cotA (ii) sin9A−sin7Acos7A−cos9A=cot8A (iii) sinA−sinBcosA−cosB=tanA−B2 (iv) sinA+sinBsinA−sinBtan(A+B2)cotA+B2 (v) cosA+cosBcosB−cosA=cotA+B2cotA−B2
Prove that 1−cosA+cosB−cos(A+B)1+cosA−cosB−cos(A+B)=tanA2cot(B2).