If cosA=cosBcosC and A+B+C=π, then the value of cotBcotC is
1
2
13
12
Finding the value of cot B cot C:
Given, A+B+C=πA=π–(B+C)
Taking “cos” on both sides,
cosA=cos[π–(B+C)]cosA=-cos(B+C)cosA=-[cosBcosC–sinBsinC]cosBcosC=-cosBcosC+sinBsinC[∵giventhatcosA=cosBcosC]cosBcosC+cosBcosC=sinBsinC2cosBcosC=sinBsinCcosBcosCsinBsinC=12cotBcotC=1/2
Hence, the correct answer is option (D)