If cos A=45 and cos B=1213,3π2<A,B<2π, find the value of the following
(i) cos(A+b)
(ii) sin(A−B)
Given, cos A=45 and cos B=1213, since A and B both lie in IV quadrant, it follows that sin A and sin B are negative.
∴ sin A=−√1−cos2A=−√1−1625=−√925=−35
and sin B=−√1−cos2B=−√1−144169=−√25169=−513
(i)cos(A+B)=cos A cos B−sin A sin B=45×1213−(−35)(−513)=4865−1565=3365
(ii) cos(A−B)=sin A cos B−cos A sin B=−35×1213−45×−513=−3665−2065=1665