The correct option is
B tan(A+B2)=m+1m−1cot(B−A2)cosA=mcosBcosAcosB=m→(i)On addingandsubstractingbyoneinequation(i)bothsides⇒cosA+cosBcosB=m+1⇒2cos(A+B2)⋅cos(A−B2)cosB=m+1→(ii)⇒−2sin(A+B2)⋅sin(A−B2)(cosB)=(m−1)→(iii)divideequation(iii)by(ii)tan(A+B2⋅)tan(A−B2)=(1+m)(1−m)tanA+B2=m+1m−1cotB−A2
Hence, this is the answer.