wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosAsinA=mandcosA+sinA=n, show that m2n2m2+n2=2sinAcosA=2tanA+cotA

Open in App
Solution

Given cosAsinA=m and cosA+sinA=n

want to show : m2n2m2+n2=2sinAcosA=2tanA+cotA

proof :- firstly observe that 2tanA+cotA=2sinAcosA+cosAsinA=2sinAcosAsin2A+cos2A
=2sinAcosA

m2n2=(cosAsinA)2(cosA+sinA)2

=(cos2A+sin2A2cosAsinA)(cos2A+sin2A=2cosAsinA)

=4cosAsinA


m2n2=(cosAsinA)2(cosA+sinA)2

=(cos2A+sin2A2cosAsinA)(cos2A+sin2A=2cosAsinA)

=2(cos2A+sin2A)

=2

thus , m2n2m2+n2=2cosAsinA=2tanA+cotA

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon