wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+2cosβ+3cosγ=0,sinα+2sinβ+3sinγ=0 and α+β+γ=π, then sin3α+8sin3β+27sin3γ=

A
18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 0
Let z1=cosα+isinα=eiα, z2=cosβ+isinβ=eiβ and z3=cosγ+isinγ=eiγ

Now z1+2z2+3z2=(cosα+2cosβ+3cosγ)+i(sinα+2sinβ+3sinγ)=0

Now using the fact: If a+b+c=0, then a3+b3+c3=3abc
(z1)3+(2z2)3+(3z3)3=3(z1)(2z2)(3z3)
e3iα+8e3iβ+27e3iγ=18ei(α+β+γ)=18eiπ=18(cosπ+isinπ)=18(1+0i)

(cos3α+8cos3β+27cos3γ)+i(sin3α+8sin3β+27sinγ)=18+i(0)

Hence sin3α+8sin3β+27sin3γ=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polar Representation of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon