If cosα+2cosβ+3cosγ=sinα+2sinβ+3sinγ=0, then the value of sin3α+8sin3β+27sin3γ is
A
sin(α+β+γ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3sin(α+β+γ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18sin(α+β+γ)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin(α+2β+3γ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C18sin(α+β+γ) Let a=cosα+isinα,b=cosβ+isinβ,c=cosγ+isinγ Then, a+2b+3c=(cosα+2cosβ+3cosγ)+i(sinα+2sinβ+3sinγ)=0 ⇒a3+8b3+27c3=18abc ⇒cos3α+8cos3β+27cos3γ=18cos(α+β+γ) and sin3α+8sin3β+27sin3γ=18sin(α+β+γ)