If cos(α+β)=4/5andsin(α–β)=5/13,where0≤α,β≤π/4, then tan2α is equal to
25/16
56/33
19/12
20/7
The explanation for the correct option:
Step 1: Finding the quadrant for (α-β)Given,
cos(α+β)=4/5α+β∈Istquadrantsin(α–β)=5/13α−β∈Istquadrant{since0≤α,β≤π/4}
Step 2: Finding the value of tan(α-β)
From the above,
sin(α+β)=3/5cos(α–β)=12/13Thatmeans,tan(α+β)=3/4tan(α–β)=5/12∵2α=(α+β)+(α–β)
Step 3: Taking tan on both sides,
tan2α=tan[(α+β)+(α–β)]=tan(α+β)+tan(α–β1–tan(α+β)tan(α–β)=(3/4)+(5/12)1–(3/4)(5/12)=(9+5)/12(16–5)/16=(14/12)×(16/11)=56/33
Hence, the correct answer is option B