wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(α+β)=45 and sin(αβ)=513,
where α,β lie between 0 and π4, find value of tan2α

Open in App
Solution

Given:
cos(α+β)=45,sin(αβ)=513(1)
sin(α+β)=1cos2(α+β)
[ sin2x+cos2x=1]
=11625
=925
sin(α+β)=35(2)
andcos(αβ)=1sin2(αβ)
[ sin2x+cos2x=1]
=125169
=144169
cos(αβ)=1213(3)
From equations (1),(2) and (3)
tan(α+β)=sin(α+β)cos(α+β)=3545
tan(α+β)=34(4)
andtan(αβ)=sin(αβ)cos(αβ)=5131213
tan(αβ)=512(5)
tan2α=tan[(α+β)+(αβ)]
=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)
=34+512134×512(From eq.(4) and (5))
=141211548=14123348=1412×4833
tan2α=5633

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon