Given:
cos(α+β)=45,sin(α−β)=513…(1)
sin(α+β)=√1−cos2(α+β)
[∵ sin2x+cos2x=1]
=√1−1625
=√925
sin(α+β)=35…(2)
andcos(α−β)=√1−sin2(α−β)
[∵ sin2x+cos2x=1]
=√1−25169
=√144169
cos(α−β)=1213…(3)
From equations (1),(2) and (3)
tan(α+β)=sin(α+β)cos(α+β)=3545
⇒tan(α+β)=34…(4)
andtan(α−β)=sin(α−β)cos(α−β)=5131213
⇒tan(α−β)=512…(5)
tan2α=tan[(α+β)+(α−β)]
=tan(α+β)+tan(α−β)1−tan(α+β)tan(α−β)
=34+5121−34×512(From eq.(4) and (5))
=14121−1548=14123348=1412×4833
tan2α=5633