Consider the given equation.
cos(α+β)sin(γ+θ)=cos(α−β)sin(γ−θ)
[cosαcosβ−sinαsinβ][sinγcosθ+cosγsinθ]=[cosαcosβ+sinαsinβ][sinγcosθ−cosγsinθ]
cosαcosβsinγcosθ+cosαcosβcosγsinθ−sinαsinβsinγcosθ−sinαsinβcosγsinθ=cosαcosβsinγcosθ−cosαcosβcosγsinθ+sinαsinβsinγcosθ−sinαsinβcosγsinθ
2cosαcosβcosγsinθ=2sinαsinβsinγcosθ
sinαsinβsinγcosθcosαcosβcosγsinθ=1
tanαtanβtanγcotθ=1
tanαtanβtanγ=1cotθ
tanαtanβtanγ=tanθ
Henced, proved.