wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+cosβ=0=sinα+sinβ, then cos2α+cos2β =2cos(π+α+β)

Open in App
Solution

Given that cosα+cosβ=0
cosβ=cosα …………..(1)
Given that sinα+sinβ=0
sinβ=sinα …………(2)
Now,
L.H.S=cos2α+cos2β
=(cos22αsin22α)+(cos22βsin22β)
=(cos22αsin22α)+[(cosα)2(sinα)2]
By substituting based on (1) & (2)
=(cos2αsin2α)+(cos2αsin2α)
=2(cos2αsin2α)
=2(cosαcosαsinαsinα)
=2(cosα(cosβ)sinα(sinβ)
=2(cosαcosβsinαsinβ)
=2cos(α+β)
=2cos(π+α+β)
=R.H.S.

1230545_1464272_ans_fe210651bb39455680d51d272e5898dc.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon