If (cosα+cosβ)2+(sinα+sinβ)2=λcos2(α−β2), write tha value of λ
We have,
LHS=(cosα+cosβ)2+(sinα+sinβ)2=[2cos(α+β2)cos(α−β2)]2[2sin(α+β2)cos(α−β2)]2=4cos2(α+β2)cos2(α−β2)+4sin2(α+β2)cos2(α−β2)=4cos2(α−β2)[cos2(α+β2)+sin2(α+β2)]=4cos2(α−β2)[∵cos2+θ+sin2θ=1]⇒(cosα+cosβ)2+(sinα+sinβ)2=4cos2(α−β2)
It is given that,
(cosα+cosβ)2+(sinα+cosβ)2=λcos2(α−β2)
On comparing, we get
λ=4∴λ=4