If cosα+cosβ=a,sinα+sinβ=b and α−β=2θ, then cos3θcosθ is equal to:
cos3θcosθ=4cos2θ−3
=2cos2θ−1
=2cos(α−β)−1 .........(1)
Now a2+b2=(cos2α+cos2β+2cosαcosβ)+(sin2α+sin2β+2sinαsinβ)
=2+2(cosαcosβ+sinαsinβ)
=2+2cos(α−β)
So, 2cos(α−β)=a2+b2−2 ............(2)
∴cos3θcosθ=a2+b2−3 ........From (1) and (2)