The correct option is D 3
Let x=cosα+isinα, y=cosβ+isinβ, z=cosγ+isinγ
x+y+z=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)
x+y+z=0⇒x3+y3+z3=3xyz
x3+y3+z3xyz=3⇒x2yz+y2zx+z2xy=3
⇒e2αeβeγ+e2βeγeα+e2γeαeβ=3
ei(2α−β−γ)+ei(2β−γ−α)+ei(2γ−α−β)=3
Comparing real and imaginary parts on both sides
cos(2α−β−γ)+cos(2β−γ−α)+cos(2γ−α−β)=3