Given that:
Cosα+Cosβ+Cosγ=0=Sinα+Sinβ+Sinγ
To prove:
Cos2α+Cos2β+Cos2γ=32=Sin2α+Sin2β+Sin2γ
Solution:
Cosα+Cosβ+Cosγ=0=Sinα+Sinβ+Sinγ
Let, Z=e(α+β+γ)=0
Therefore, Cosα+Cosβ+Cosγ=0=Sinα+Sinβ+Sinγ
or, Z2=0 (∵Z=0)
or, Z2=e2(α+β+γ)=0
or, Z2=e(2α+2β+2γ)=0
or, Cos2α+Cos2β+Cos2γ=0=Sin2α+Sin2β+Sin2γ
or, Cos2α+Cos2β+Cos2γ=0
or, 2Cos2α−1+2Cos2β−1+2Cos2γ−1=0 (∵Cos2θ=2Cos2θ−1)
or, 2(Cos2α+Cos2β+Cos2γ)=3
or, Cos2α+Cos2β+Cos2γ=32
Similarly,
or, Sin2α+Sin2β+Sin2γ=0
or, 1−2Sin2α+1−2Sin2β+1−2Sin2γ=0 (∵Cos2θ=1−2Sin2θ)
or, 2(Sin2α+Sin2β+Sin2γ)=3
or, Sin2α+Sin2β+Sin2γ=32
Therefore, Cos2α+Cos2β+Cos2γ=32=Sin2α+Sin2β+Sin2γ