wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+cosβ+cosγ=0=sinα+sinβ+sinγ prove that cos3α+cos3β+cos3γ=3cos(α+β+γ) and sin3α+sin3β+sin3γ=3sin(α+β+γ)

Open in App
Solution

Given cosα+cosβ+cosγ=sinα+sinβ+sinγ=0
Consider (cosα+isinα)+(cosβ+isinβ)+(cosγ+isinγ)=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)=0
eiα+eiβ+eiγ=0
We know that when a+b+c=0 then a3+b3+c3=3abc
Therefore we get ei3α+ei3β+ei3γ=3eiαeiβeiγ=3ei(α+β+γ)
cos3α+cos3β+cos3γ=3cos(α+β+γ) and sin3α+sin3β+sin3γ=3sin(α+β+γ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is a Good Fuel?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon