1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of nth Root of a Complex Number
If cosα + c...
Question
If
cos
α
+
cos
β
+
cos
γ
=
0
=
sin
α
+
sin
β
+
sin
γ
prove that
cos
3
α
+
cos
3
β
+
cos
3
γ
=
3
cos
(
α
+
β
+
γ
)
and
sin
3
α
+
sin
3
β
+
sin
3
γ
=
3
sin
(
α
+
β
+
γ
)
Open in App
Solution
Given
cos
α
+
cos
β
+
cos
γ
=
sin
α
+
sin
β
+
sin
γ
=
0
Consider
(
cos
α
+
i
sin
α
)
+
(
cos
β
+
i
sin
β
)
+
(
cos
γ
+
i
sin
γ
)
=
(
cos
α
+
cos
β
+
cos
γ
)
+
i
(
sin
α
+
sin
β
+
sin
γ
)
=
0
⇒
e
i
α
+
e
i
β
+
e
i
γ
=
0
We know that when
a
+
b
+
c
=
0
then
a
3
+
b
3
+
c
3
=
3
a
b
c
Therefore we get
e
i
3
α
+
e
i
3
β
+
e
i
3
γ
=
3
e
i
α
e
i
β
e
i
γ
=
3
e
i
(
α
+
β
+
γ
)
⇒
cos
3
α
+
cos
3
β
+
cos
3
γ
=
3
cos
(
α
+
β
+
γ
)
and
sin
3
α
+
sin
3
β
+
sin
3
γ
=
3
sin
(
α
+
β
+
γ
)
Suggest Corrections
0
Similar questions
Q.
If
c
o
s
α
+
c
o
s
β
+
c
o
s
γ
=
s
i
n
α
+
s
i
n
β
+
s
i
n
γ
=
0
, then
s
i
n
3
α
+
s
i
n
3
β
+
s
i
n
3
γ
=
3
s
i
n
(
α
+
β
+
γ
)
.
Q.
I
f
c
o
s
α
+
c
o
s
β
+
c
o
s
γ
=
s
i
n
α
+
s
i
n
β
+
s
i
n
γ
=
0
t
h
e
n
c
o
s
3
α
+
c
o
s
3
β
+
c
o
s
3
γ
e
q
u
a
l
s
t
o
Q.
cos
(
α
−
β
)
+
cos
(
β
−
γ
)
+
cos
(
γ
−
α
)
=
−
3
2
then prove that
cos
α
+
cos
β
+
cos
γ
=
sin
α
+
sin
β
+
sin
γ
=
0
Q.
If
cos
α
+
cos
β
+
cos
γ
=
sin
α
+
sin
β
+
sin
γ
=
0
,
then
cos
(
2
α
−
β
−
γ
)
+
cos
(
2
β
−
γ
−
α
)
+
cos
(
2
γ
−
α
−
β
)
=
Q.
Assertion :
If
c
o
s
(
β
−
γ
)
+
c
o
s
(
γ
−
α
)
+
c
o
s
(
α
−
β
)
=
−
3
2
, then
Reason:
c
o
s
α
+
c
o
s
β
+
c
o
s
γ
=
0
and
s
i
n
α
+
s
i
n
β
+
s
i
n
γ
=
0
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
What Is a Good Fuel?
MATHEMATICS
Watch in App
Explore more
Properties of nth Root of a Complex Number
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app