wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+cosβ+cosγ=0=sinα+sinβ+sinγ, then prove that cos2α+cos2β+cos2γ=32=sin2α+sin2β+sin2γ

Open in App
Solution

cosα+cosβ+cosγ=0

sinα+sinβ+sinγ=0

cosα+cosβ+cosγ+ι(sinα+sinβ+sinγ)=0

Let cosα+ι(sinα)=a

cosβ+ι(sinβ)=b

cosγ+ι(sinγ)=c

So, a+b+c=0(1)

(a+b+c)2=0

cosα+cosβ+cosγι(sinα+sinβ+sinγ)=0ι(0)

=0

So, cosαιsinα+cosβιsinβ+cosγιsinγ=0

1cosαιsinα+1cosβιsinβ+1cosγιsinγ=0

1a+1b+1c=0

ab+bc+caabc=0

ab+bc+ca=0

As by (1)

(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0

(a+b+c)2=a2+b2+c2+2(0)=0(2)

a2+b2+c2=0

cos2α+cos2β+cos2γ+ι(sin2α+sin2β+sin2γ)=0

cos2α+cos2β+cos2γ=0

2cos2α1+2cos2β1+2cos2γ1=0

cos2α+cos2β+cos2γ=32

sin2α+sin2β+sin2γ=3(cos2α+cos2β+cos2γ)=332

=32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is a Good Fuel?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon