If cosα,cosβ,cosγ are direction-cosines of any straight line, then prove that: cos2α+cos2β+cos2γ=−1
Open in App
Solution
cosα,cosβ,cosγ are direction-cosines of a straight line ∴cos2α+cos2β+cos2γ=1 now from L.H.S.=cos2α+cos2β+cos2γ =2cos2α−1+2cos2β−1+2cos2γ−1 =2(cos2α+cos2β+cos2γ)−3 =2×1−3 =2−3 =−1=R.H.S. L.H.S=R.H.S