The correct option is
A True
Given cosα+cosβ+cosγ=0
sinα+sinβ+sinγ=0 (1)
Now, Let z1=cosα+isinα
z2=cosβ+isinβ
z3=cosγ+isinγ
1) z1+z2+z3=(cosα+isinα)+(cosβ+isinβ)+(cosγ+isinγ)
∴z1+z2+z3=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)4
∴z1+z2+z3=0+i(0) (from equation (1))
∴z1+z2+z3=0 (2)
2) (z13+z23)+z33=(z1+z2)3−3z12z2−3z1z22+z33
Now, from equation (2), we can write,
z1+z2=−z3
∴(z13+z23)+z33=(−z3)3−3z12z2−3z1z22+z33
∴(z13+z23)+z33=−z33−3z1z2(z1+z2)+z33
∴(z13+z23)+z33=−3z1z2(−z3)
∴(z13+z23)+z33=3z1z2z3
∴(cosα+isinα)3+(cosβ+isinβ)3+(cosγ+isinγ)3=3(cosα+isinα)(cosβ+isinβ)(cosγ+isinγ)
By De-Moivre's theorem,
∴(eiα)3+(eiβ)3+(eiγ)3=3(eiα)(eiβ)(eiγ)
∴e3iα+e3iβ+e3iγ=3ei(α+β+γ)
∴(cos3α+isin3α)+(cos3β+isin3β)+(cos3γ+isin3γ)=3[cos(α+β+γ)+isin(α+β+γ)]
∴(cos3α+cos3β+cos3γ)+i(sin3α+sin3β+sin3γ)=3cos(α+β+γ)+3isin(α+β+γ)
Equating imaginary parts on both the sides, we get,
sin3α+sin3β+sin3γ=3sin(α+β+γ)