wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+cosβ+cosγ=sinα+sinβ+sinγ=0, then
sin3α+sin3β+sin3γ=3sin(α+β+γ).

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Given cosα+cosβ+cosγ=0
sinα+sinβ+sinγ=0 (1)

Now, Let z1=cosα+isinα
z2=cosβ+isinβ
z3=cosγ+isinγ

1) z1+z2+z3=(cosα+isinα)+(cosβ+isinβ)+(cosγ+isinγ)

z1+z2+z3=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)4

z1+z2+z3=0+i(0) (from equation (1))

z1+z2+z3=0 (2)

2) (z13+z23)+z33=(z1+z2)33z12z23z1z22+z33

Now, from equation (2), we can write,
z1+z2=z3

(z13+z23)+z33=(z3)33z12z23z1z22+z33

(z13+z23)+z33=z333z1z2(z1+z2)+z33

(z13+z23)+z33=3z1z2(z3)

(z13+z23)+z33=3z1z2z3

(cosα+isinα)3+(cosβ+isinβ)3+(cosγ+isinγ)3=3(cosα+isinα)(cosβ+isinβ)(cosγ+isinγ)

By De-Moivre's theorem,
(eiα)3+(eiβ)3+(eiγ)3=3(eiα)(eiβ)(eiγ)

e3iα+e3iβ+e3iγ=3ei(α+β+γ)

(cos3α+isin3α)+(cos3β+isin3β)+(cos3γ+isin3γ)=3[cos(α+β+γ)+isin(α+β+γ)]

(cos3α+cos3β+cos3γ)+i(sin3α+sin3β+sin3γ)=3cos(α+β+γ)+3isin(α+β+γ)

Equating imaginary parts on both the sides, we get,

sin3α+sin3β+sin3γ=3sin(α+β+γ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De-Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon