wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosα+cosβ+cosγ=sinα+sinβ+sinγ=0, then
cos(β+γ)+cos(γ+α)+cos(α+β)=0
sin(β+γ)sin(γ+α)+sin(α+β)=0

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Let z1=cosα+isinα
z2=cosβ+isinβ
z3=cosγ+isinγ

1) z1+z2+z3=cosα+isinα+cosβ+isinβ+cosγ+isinγ

z1+z2+z3=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)

From the given condition,
z1+z2+z3=(0)+i(0)
z1+z2+z3=0 (1)

2) 1z1+1z2+1z3=1cosα+isinα+1cosβ+isinβ+1cosγ+isinγ

1z1+1z2+1z3=1eiα+1eiβ+1eiγ

z2z3+z1z3+z1z2z1z2z3=eiα+eiβ+eiγ

z2z3+z1z3+z1z2z1z2z3=(cosαisinα)+(cosβisinβ)+(cosγisinγ)

z2z3+z1z3+z1z2z1z2z3=(cosα+cosβ+cosγ)i(sinα+sinβ+sinγ)

z2z3+z1z3+z1z2z1z2z3=(0)i(0)

z2z3+z1z3+z1z2z1z2z3=0

z2z3+z1z3+z1z2=0 (2)

3) (z1+z2+z3)2=z12+z22+z32+2z1z2+2z2z3+2z1z3

(z1+z2+z3)2=z12+z22+z32+2(z1z2+z2z3+z1z3)

From equations (1) and (2), we get,
(0)2=z12+z22+z32+2(0)

z12+z22+z32=0

(cosα+isinα)2+(cosβ+isinβ)2+(cosγ+isinγ)2=0

cos2αsin2α+isin2α+cos2βsin2β+isin2β+cos2γsin2γ+isin2γ=0

cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0+i(0)

Comparing real and imaginary parts of both sides, we get,
cos2α+cos2β+cos2γ=0
sin2α+sin2β+sin2γ=0

Now,
cosα+cosβ+cosγ=0
sinα+sinβ+sinγ=0

Squaring and taking difference of both equations,
(cosα+cosβ+cosγ)2(sinα+sinβ+sinγ)2=0

cos2α+cos2β+cos2γ+2cosαcosβ+2cosβcosγ+2cosαcosγsin2αsin2βsin2γ2sinαsinβ2sinβsinγ2sinαsinγ=0

(cos2αsin2α)+(cos2βsin2β)+(cos2γsin2γ)+2[(cosαcosβsinαsinβ)+(cosβcosγsinβsinγ)+(cosαcosγsinαsinγ)]=0

cos2α+cos2β+cos2γ+2[cos(α+β)+cos(β+γ)+cos(α+γ)]=0

0+2[cos(α+β)+cos(β+γ)+cos(α+γ)]=0

cos(α+β)+cos(β+γ)+cos(α+γ)=0

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon