The correct option is
A True
Let z1=cosα+isinα
z2=cosβ+isinβ
z3=cosγ+isinγ
1) z1+z2+z3=cosα+isinα+cosβ+isinβ+cosγ+isinγ
∴z1+z2+z3=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ)
From the given condition,
z1+z2+z3=(0)+i(0)
∴z1+z2+z3=0 (1)
2) 1z1+1z2+1z3=1cosα+isinα+1cosβ+isinβ+1cosγ+isinγ
∴1z1+1z2+1z3=1eiα+1eiβ+1eiγ
∴z2z3+z1z3+z1z2z1z2z3=e−iα+e−iβ+e−iγ
∴z2z3+z1z3+z1z2z1z2z3=(cosα−isinα)+(cosβ−isinβ)+(cosγ−isinγ)
∴z2z3+z1z3+z1z2z1z2z3=(cosα+cosβ+cosγ)−i(sinα+sinβ+sinγ)
∴z2z3+z1z3+z1z2z1z2z3=(0)−i(0)
∴z2z3+z1z3+z1z2z1z2z3=0
∴z2z3+z1z3+z1z2=0 (2)
3) (z1+z2+z3)2=z12+z22+z32+2z1z2+2z2z3+2z1z3
(z1+z2+z3)2=z12+z22+z32+2(z1z2+z2z3+z1z3)
From equations (1) and (2), we get,
(0)2=z12+z22+z32+2(0)
∴z12+z22+z32=0
∴(cosα+isinα)2+(cosβ+isinβ)2+(cosγ+isinγ)2=0
∴cos2α−sin2α+isin2α+cos2β−sin2β+isin2β+cos2γ−sin2γ+isin2γ=0
∴cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0+i(0)
Comparing real and imaginary parts of both sides, we get,
cos2α+cos2β+cos2γ=0
sin2α+sin2β+sin2γ=0
Now,
cosα+cosβ+cosγ=0
sinα+sinβ+sinγ=0
Squaring and taking difference of both equations,
(cosα+cosβ+cosγ)2−(sinα+sinβ+sinγ)2=0
∴cos2α+cos2β+cos2γ+2cosαcosβ+2cosβcosγ+2cosαcosγ−sin2α−sin2β−sin2γ−2sinαsinβ−2sinβsinγ−2sinαsinγ=0
∴(cos2α−sin2α)+(cos2β−−sin2β)+(cos2γ−sin2γ)+2[(cosαcosβ−sinαsinβ)+(cosβcosγ−−sinβsinγ)+(cosαcosγ−sinαsinγ)]=0
∴cos2α+cos2β+cos2γ+2[cos(α+β)+cos(β+γ)+cos(α+γ)]=0
∴0+2[cos(α+β)+cos(β+γ)+cos(α+γ)]=0
∴cos(α+β)+cos(β+γ)+cos(α+γ)=0