If cos α+cos β=13 and sin α+sin β=14, prove that cosα−β2=±524
We have,
cos α+cos β=13 and sin α+sin β=14
Squaring and adding, we get
(cos2 α+cos2β+2cos α cos β)+(sin2α+sin2β+2sin α sin β)=19+116⇒ 1+1+2(cos α+cos β+sin α sin β)=25144⇒ 2 cos (α−β)=25144−2=−263144 ⇒ cos (α−β)=−263288
Now,
cos (α−β2)=√1+cos(α−β)2=√1−2632882=√25576=±524∴ cos(α−β2)=±524