wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos α+cos β=13 and sin α+sin β=14, prove that cosαβ2=±524

Open in App
Solution

We have,

cos α+cos β=13 and sin α+sin β=14

Squaring and adding, we get

(cos2 α+cos2β+2cos α cos β)+(sin2α+sin2β+2sin α sin β)=19+116 1+1+2(cos α+cos β+sin α sin β)=25144 2 cos (αβ)=251442=263144 cos (αβ)=263288

Now,

cos (αβ2)=1+cos(αβ)2=12632882=25576=±524 cos(αβ2)=±524


flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon