If cosB is the geometric mean of sinA and cosA, where 0<A,B<π2, then the value(s) of cos2B is/are
A
1−sin2A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2sin2(π4−A)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin2A−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−2sin2(π4−A)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Csin2A−1 D−2sin2(π4−A) Given: (cosB)2=sinAcosA⇒2(cosB)2=2sinAcosA⇒2cos2B=sin2A⇒1+cos2B=sin2A∴cos2B=sin2A−1⇒cos2B=−(1−sin2A)⇒cos2B=−(cosA−sinA)2⇒cos2B=−2(1√2cosA−1√2sinA)2∴cos2B=−2sin2(π4−A)