wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos α + cos β=13 and sin sinα+sin β=14, prove that cosα-β2=±524

Open in App
Solution

Squaring and adding equations cos α + cos β=13 and sinα+sin β=14, we get

cos2α+cos2β+2cosα×cosβ+sin2α+sin2β+2sinα×sinβ=19+1161+1+2cosα×cosβ+sinα×sinβ=251442+2cosα-β=25144 cosA-B=cosA×cosB+sinA×sinBcosα-β=-263288 ... (1)

Now,

cos2α-β2=1+cosα-β2 =1-2632882 [From (1)] =25576 =±524

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphs of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon