wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos θ=cos α+cos β1+cos α cos β, prove that tanθ2=±tanα2tanβ2

Open in App
Solution

Given:

cos θ=cos α+cos β1+cos α cos β ...(1)

1-tan2θ21+tan2θ2 =cosα+cosβ1+cosα×cosβ cosθ=1-tan2θ21+tan2θ2 By componendo and dividendo, we get1-tan2θ2+1+tan2θ21-tan2θ2-1+tan2θ2 =1+cosα×cosβ+cosα+cosβ-1+cosαcosβ-cosα-cosβ22tan2θ2=1+cosα1+cosβ1-cosα1-cosβ

tan2θ2=1-cosα1-cosβ1+cosα1+cosβtan2θ2=2sin2α2×2sin2β22cos2α2×2cos2β2tan2θ2=tan2α2×tan2β2tanθ2=±tanα2×tanβ2Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon