We have,
cosA2=√b+c2c
cos2A2=b+c2c …….. (1)
Since,
cosA=2cos2A2−1
cos2A2=1+cosA2
From equation (1)
1+cosA2=b+c2c
1+cosA=b+cc
cosA=b+cc−1
cosA=bc
We know that
cosA=b2+c2−a22bc
Therefore,
b2+c2−a22bc=bc
b2+c2−a22b=b
b2+c2−a2=2b2
c2−a2=b2
a2+b2=c2
Hence, proved.