wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosx2cosx22cosx23cosx2n=f(x) , then 12tanx2+122tanx22++12ntanx2n=

A
f(x)f(x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(x)f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x)f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A f(x)f(x)
cosx2cosx22cosx23....cosx2n=f(x)
sinx=2sinx2cosx2
sinx=22sinx4cosx4cosx2
sinx=23sinx8cosx8cosx4cosx2
---------------------
sinx=2nsinx2nnk=1cosx2k
Also
cos(x2)cos(x4)cos(x8)=(2cos(x2)sin(x2))cos(x4)cos(x8)2sinx2
=sinx(cos(x4)sin(x4))cos(x8)(2sin(x2).2sin(x2))=sinxcos(x8)4sin(x4)
=sinx(2sin(x8)cos(x8))8sin(x4)sin(x8)
cos(x2)cos(x4)cos(x8)=sinx8sin(x8)
cos(x2)cos(x22)....cos(x2n)=sinx2nsin(x2n)=f(x)
n,2n,x2n0,sin(x2n)x2n....(1)
cos(x2)cos(x22)....cos(x2n)=sinxx=f(x)
sin(x2)=12cos(x2)kn=k=112ktan(k2k)=f(x)f(x)
12tanx2+122tanx22+....12ntanx2n=f(x)f(x)
option (A) is correct

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon