The correct option is B √q/p
Given
cosecθ=p+qp−q
formulaused
tan(π4+θ)=tan(π4)+tanθ1−tan(π4)tanθ
cos2θ−sin2θ=cos2θ
sin2θ=2sinθcosθ
cosθ=√1−sin2θ
cosecθ=p+qp−q
⇒1sinθ=p+qp−q
⇒sinθ=p−qp+q
cosθ=√1−(p−qp+q)2
=√(p+q)2−(p−q)2p+q
=√(p2+q2+2pq)−(p2+q2+2pq)p+q
=√4pqp+q=2√pqp+q
cot(π4+θ2)=1tan(π4+θ2)
=1tan(π4)+tan(θ2)1−tan(π4)tan(θ2)
=1−tan(π4)tan(θ2)tan(π4)+tan(θ2)
=1−tan(θ2)1+tan(θ2)
=1−sinθ2cosθ21+sinθ2cosθ2
=cosθ2−sinθ2cosθ2+sinθ2
=cosθ2−sinθ2cosθ2+sinθ2×cosθ2−sinθ2cosθ2−sinθ2
=cos2θ2+sin2θ2−2sinθ2cosθ2cos2θ2−sin2θ2
=1−sinθcosθ
=1−p−qp+q2√pqp+q
=2q2√pq=√qp