wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3, secθcosθ=b3
then a2b2(a2+b2) is equal to

Open in App
Solution

Given that,

cosecθsinθ=a3 secθcosθ=b3

1sinθsinθ=a3 1cosθcosθ=b3

1sin2θsinθ=a3 1cos2θcosθ=b3

cos2θsinθ=a3 sin2θcosθ=b3

cotθcosθ=a3 tanθsinθ=b3

a2=(cosθcotθ)2/3 b2=(tanθsinθ)2/3


a2b2=(sinθ)2/3(cosθ)2/3


a2+b2=(cosθ)4/3(sinθ)2/3+(sinθ)4/3(cosθ)2/3=sin2θ+cos2θ(sinθ)2/3(cosθ)2/3=1(sinθcosθ)2/3


a2b2(a2+b2)=(sinθcosθ)2/3×1(sinθcosθ)2/3=1


a2b2(a2+b2)=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon