Given,
cosecx−cotx=32 ……. (1)
We know that , cosec2 x−cot2x=32
(cosecx+cotx)(cosecx−cotx)=1 …..(2)
From equation (1) and(2),
(cosec x+cotx)32=1
cosec x+cotx=23
Add equation (1) to (3) we get,
2cosecx=23+32
cosec x=1312
sinx=1213
sinx is positive it means “sinx ” lie in either first or second quadrant
Putting cosec x=1312 in equation (3) we get
cosec x+cotx=23
1312+cotx=23
cot x=−512
cotx is negative so can either be in second or fourth quadrant
but sinx is also positive x must lie in second quadrant
Now cotx=cosxsinx
cosx=cotx×sinx
cosx=−512×1213
cosx=−512
Hence x lie in second quadrant.