If cos x2, cos x22, cos x23.............cos x2n = sinx2nsinx2nThen
12tan x2 + 122tan x22 + ............. 12ntan x2n is
Since, 12tan(x2) = 12cot(x2) - cotx
∴ 122tan(x22) = 122cot(x22) - 12cot( x2)
123 tan(x23) = 123cot(x23) - 122cot(x22)
12n tan(x2n) = 12ncot(x2n) - 12n−1cot(x2n−1)
Adding we get
12 tan( x2) + 122tan(x22) +..................+ 12ntan(x2n)
= 12n cot(x2n) -cot x