If cos(A+B)=35 and tanAtanB=2, then cosAcosB
We have,
cos(A+B)=35 ……. (1)
tanAtanB=2 ……. (2)
Since,
tan(A+B)=tanA+tanB1−tanAtanB
tan(A+B)=tanA+tanB1−2
tan(A+B)=−(tanA+tanB)
sin(A+B)cos(A+B)=−(sinAcosA+sinBcosB)
sin(A+B)cos(A+B)=−(sinAcosB+cosAsinBcosAcosB)
sin(A+B)cos(A+B)=−(sin(A+B)cosAcosB)
1cos(A+B)=−(1cosAcosB)
cos(A+B)=−cosAcosB
From equation (1), we get
35=−cosAcosB
cosAcosB=−35
Hence, this is the answer.