If cos(α+β)sin(γ+δ)=cos(α−β)sin(γ+δ), then prove that cotαcotβcotγ=cotδ
Open in App
Solution
From the given relation, we have sin(γ+δ)sin(γ−δ)=cos(α−β)cos(α+β) Now apply componendo and dividendo ∴sin(γ+δ)+sin(γ−δ)sin(γ+δ)−sin(γ−δ)=cos(α−β)+cos(α+β)cos(α−β)−cos(α+β) or ∴cotδ=cotαcotβcotγ