If cos(x−y),cos x,cos(x+y) are three distinct numbers which are harmonic progression and cos x≠cos y then 1+cosy=
cos2x
−cos2x
cos2x−1
cos2x−2
b=2aca+c⇒cos x=2 cos(x−y)cos(x+y)cos(x−y)+cos(x+y)⇒1+cos y=cos2x