wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(yz)+cos(zx)+cos(xy)=32, prove that cosxcosycosz=0 = sinx +siny+sinz

Open in App
Solution

cos(zx)+cos(y2)+cos(xy)=32
cosxcosy+sinxsiny+cosycos3+sinysin2+coszcosx+sin2sinx=32...(1)
3+2(cosxcosy+....)+2(sinxsiny....)=0...(2)
3 can be written as 1 + 1 + 1 s.t
(cos2x+sin2x)+(cos2y+sin2y)+(cos2+sin22)
so, the equation becomes,
0=cos2x+cos2y+cos2z+2cosxcosy+2cosycosz+
2coszcosx+sin2x+sin2y+sin2z+2sinxsiny
+2sinysinz+2sinzsinx
0=(cosx+cosy+cosz)2+(sinx+siny+sinz)2
This is possible if,
cosx+cosy+cosz=0
or sinx+siny+sinz=0
cosx+cosy+cosz=0=sinx+siny+sinz

1159630_1144470_ans_218d2cb7a5564fada21805c408e3f8b8.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon