If cos-123x+cos-134x=π2, x>34 then x=?
14511
14512
14513
14514
Find the value of x:
Given, cos-123x+cos-134x=π2
⇒ cos-123x=π2-cos-134x
⇒ cos-123x=cos-116x2-94x
⇒ 23x=16x2-94x
⇒ 16x2-9=83
⇒ 16x2-9=649
⇒ x2=145(9×16)
∴x=14512
Hence, Option ‘B’ is Correct.
Let f(x) be a function defined by f(x)={3|x|+2x,x≠00,x=0 Show that limx→0 f(x)does not exist.