The correct option is A [0,π]∪{2π}
Given: (cosp−1)x2+(cosp)x+sinp=0
When cosp−1=0⇒cosp=1, we get
sinp=0, so
0⋅x2+x+0=0⇒x=0∴p=0,2π
When cosp−1≠0⇒cosp≠1, we get
(cosp−1)x2+(cosp)x+sinp=0
For real roots
D≥0⇒cos2p−4(cosp−1)sinp≥0⇒cos2p−4cospsinp+4sinp≥0⇒(cosp−2sinp)2−4sin2p+4sinp≥0⇒(cosp−2sinp)2+4sinp(1−sinp)≥0
As (cosp−2sinp)2≥0, 1−sinp≥0, so the inequality holds when
sinp≥0⇒p∈(0,π] (∵cosp≠1)
Hence, the complete solution of p is [0,π]∪{2π}