wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

Open in App
Solution

cos α+β sin γ+δ = cos α-β sin γ-δcos αcos β - sin α sin βsin γ cos δ + cos γ sin δ = cos α cos β + sin α sin βsin γ cos δ- cos γ sin δ

Dividing both sides by sin α sin β sin γ sin δ:cosα cosβ - sinα sinβsinγ cosδ + cosγ sinδsin α sin β sin γ sin δ=cosα cosβ + sinα sinβsinγ cosδ - cosγ sinδsin α sin β sin γ sin δcosα cosβ - sinαsinβsin α sin β ×sinγ cosδ + cosγ sinδ sin γ sin δ=cosα cosβ + sinα sinβsin α sin β ×sinγ cosδ - cosγ sinδ sin γ sin δcotα cotβ - 1cotδ + cotγ = cotα cotβ + 1cotδ - cotγcotα cotβ cotδ + cotα cotβ cotγ - cotδ - cotγ = cotα cotβ cotδ - cotα cotβ cotγ + cotδ - cotγ -cotδ - cotδ = -cotα cotβ cotγ - cotα cotβ cotγ-2cotδ =-2cotα cotβ cotγcotα cotβ cotγ = cotδHence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon