The correct option is B
-65
Given, θ∈(0,π2]
This means θ lies in first quadrant.
cos θ=1213⇒sin θ=√1−122132⇒sin θ=513⇒tan θ=sin θcos θ=512and sec θ=1cos θ=1312
Also we know,
tan (−θ)=−tan θ and sec (−θ)=sec θ
Thus, tan (−θ)×sec(−θ)⇒−tan θ×sec θ
Substituting values we get,
−tan θ×sec θ=−512×1312=−65144⇒144 tan θ×sec θ=−65144×144⇒144 tan θ×sec θ=−65
Thus, Option b. is correct.