wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ>0,tanθ+sinθ=m and tanθsinθ=n, then show that m2n2=4mn.

Open in App
Solution

tanθ+sinθ=m&tanθsinθ=n
mn=(tanθ+sinθ)(tanθsinθ)
=tan2θsin2θ
=sin2θ(sec2θ1)
=sin2θ×tan2θ
m2n2
=(m+n)(mn)
=(tanθ+sinθ+tanθsinθ)(tanθ+sinθtanθ+sinθ)
=4tanθsinθ
=4mn
Hence, proved.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon