If cosθ=817 and θ lies in the 1st quadrant, then the value of cos(30°+θ)+cos(45°-θ)+cos(120°-θ) is
2317(3–1)2+12
2317(3+1)2+12
2317(3–1)2-12
2317(3+1)2-12
Find the value of cos(30°+θ)+cos(45°-θ)+cos(120°-θ):
Given, cosθ=817 and θ lies in the 1st quadrant
⇒ sinθ=1517
∴cos(30°+θ)+cos(45°-θ)+cos(120°-θ)
=cos30°cosθ–sin30°sinθ+cos45°cosθ+sin45°sinθ+cos120°cosθ+sin120°sinθ=32cosθ–12sinθ+12cosθ+12sinθ+-12cosθ+32sinθ=32+12–12cosθ+12-12+32sinθ=(6+2–2)22817+(2–2+6)/221517=117(22)86+16–82+30–152+156=117(22)(236–232+46)=23617(22)–23217(22)+4617(22)=23317(2)–2317(2)+4617(22)=(2317)[(3–1)2+12]
Hence, Option ‘A’ is Correct.