If cos(θ−α)=a and sin(θ−β)=b(0)<θ−α,θ−β<π2), then cos2(α−β)+2absin(α−β) is equal to
We have
sin(α−β)=sin(α−θ+θ−β)
=sin[(θ−β)−(θ−α)]
=sin(θ−β)cos(θ−α)−cos(θ−β)sin(θ−α)
=ba−√1−b2√1−a2
and cos(α−β)=cos[(θ−β)−(θ−α)]
=cos(θ−β)cos(θ−α)+sin(θ−β)sin(θ−α)
=a√1−b2+b√1−a2
Substituting these values in the given expression,
we get
cos2(α−β)+2absin(α−β)
=(a√1−b2+b√1−a2)+2ab[ab−√(1−a2)√(1−b2)]
=a2(1−b2)+b2(1−a2)+2ab√(1−a2)√(1−b2)+2a2b2−2ab√(1−a2)√(1−b2)=a2+b2.