If cos(θ−α) = a, sin(θ−β) = b,
then cos2(α−β) + 2ab sin(α−β) is equal to
a2+b2
We have sin(α−β) = sin(θ−β−¯¯¯¯¯¯¯¯¯¯¯¯¯θ−α)
= sin(θ−β)cos(θ−α)−cos(θ−β)sin(θ−α)
= ba - √1−b2√1−a2
And cos(α−β)=cos(θ−β−¯¯¯¯¯¯¯¯¯¯¯¯¯θ−α)
= cos(θ−β)cos(θ−α)+sin(θ−β)sin(θ−α)
= a√1−b2+b√1−a2
∴ Given expression is cos2(α−β)+2absin(α−β)
= (a√1−b2+b√1−a2)2 + 2ab{ab−√1−a2√1−b2}
= a2+b2.
Trick: Put α=30∘, β=60∘ and θ=90∘,
then a = 12, b = 12
∴ cos2(α−β)+2absin(α−β) = 34 + 12 × (- 12) = 12
which is given by option (c).