If cos(θ−α),cosθ and cos(θ+α) are in harmonic progression, then cosθsec(α2) is equal to
As cos(θ−α),cosθ,cos(θ+α)
In H.P
cosθ=2cos(θ−α)cos(θ+α)cos(θ−α)+cos(θ+α)=2(cos2θ−sin2α)2cosθcosα⇒cos2θcosα=cos2θ−sin2α⇒(1−cosα)cos2θ=sin2α⇒cos2θ=sin2α(1−cosα)=4sin2(α2)cos2(α2)2sin2(α2)⇒cos2θ=2cos2(α2)⇒cosθsec(α2)=±√2