wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If cos(θα),cosθ,cos(θ+α) are in H.P., Then prove that cos2θ=1+cosα

Open in App
Solution

Given:cos(θα),cosθ,cos(θ+α) are in H.P

1cos(θα),1cosθ,1cos(θ+α) are in A.P

1cosθ1cos(θα)=1cos(θ+α)1cosθ

2cosθ=1cos(θ+α)+1cos(θα)

2cosθ=cos(θα)+cos(θ+α)cos(θ+α)cos(θα)

2cosθ=cosθcosαsinθsinα+cosθcosα+sinθsinαcos2θsin2α

2cosθ=2cosθcosαcos2θsin2α

1cosθ=cosθcosαcos2θsin2α

cos2θsin2α=cos2θcosα

sin2α=cos2θcos2θcosα

sin2α=cos2θ(1cosα)

sin2α(1cosα)=cos2θ

1cos2α(1cosα)=cos2θ

(1cosα)(1+cosα)(1cosα)=cos2θ

1+cosα=cos2θ

Hence cos2θ=1+cosα

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon