wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=acosϕ+ba+bcosϕ, prove that tan(θ/2)=[(ab)/(a+b)]tan(ϕ/2)

Open in App
Solution

cosθ=acosϕa+bcosϕ

1tan2(θ/2)1+tan2(θ/2)=a{1tan2(ϕ/2)}+b{1+tan2(ϕ/2)}a{1+tan2(ϕ/2)}+b{1tan2(ϕ/2)}

1tan2(θ/2)1+tan2(θ/2)=(a+b)(ab)tan2(ϕ/2)(a+b)+(ab)tan2(ϕ/2)

Apply componendo and dividendo

2tan2(θ/2)2=2(ab)tan2(ϕ/2)2(a+b)

tan(θ/2)=(ab)/(a+b)tan(ϕ/2)

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon