Given :
cosθ=1−cos2θ
⇒cosθ=sin2θ ..... [sin²x+cos²x=1]
Square on both sides ;
cos2θ=sin4θ
1−sin2θ=sin4θ ...... [sin²x+cos²x=1]
sin4θ+sin2θ=1 →equation (1)
Now cube on both sides ;
⇒sin12θ+sin6θ+3sin4θsin2θ(sin4θ+sin2θ)=1
⇒sin12θ+sin6θ+3sin10θ+3sin8θ=1
To obtain above result we add and subtract 2 on LHS side ;
⇒sin12θ+sin6θ+3sin10θ+3sin8θ+2(1)−2=1
From equation (1), 1=sin4θ+sin2θ
⇒sin12θ+sin6θ+3sin10θ+3sin8θ+2(sin4θ+sin2θ)−2=1
⇒sin12θ+3sin10θ+3sin8θ+sin6θ+2sin4θ+2sin2θ−2=1
Hence proved