wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+cos2θ=1, prove that sin12θ+3sin10θ+3sin8θ+sin6θ+2sin4θ+2sin2θ - 2 = 1

Open in App
Solution

Given :
cosθ=1cos2θ

cosθ=sin2θ ..... [sin²x+cos²x=1]

Square on both sides ;

cos2θ=sin4θ

1sin2θ=sin4θ ...... [sin²x+cos²x=1]

sin4θ+sin2θ=1 equation (1)

Now cube on both sides ;

sin12θ+sin6θ+3sin4θsin2θ(sin4θ+sin2θ)=1

sin12θ+sin6θ+3sin10θ+3sin8θ=1

To obtain above result we add and subtract 2 on LHS side ;

sin12θ+sin6θ+3sin10θ+3sin8θ+2(1)2=1

From equation (1), 1=sin4θ+sin2θ

sin12θ+sin6θ+3sin10θ+3sin8θ+2(sin4θ+sin2θ)2=1

sin12θ+3sin10θ+3sin8θ+sin6θ+2sin4θ+2sin2θ2=1

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiation
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon