Given cossin10θ+cos2sin10θ=1−−−(1)
⇒ cosθ=1−cos2θ
⇒ cosθ=sin2θ−−−(2)
Now, to prove
sin12θ+3.sin10θ+3.sin8θ+2.sin4θ+2.sin2θ−2=1
⇒ L.H.S=sin12θ+3.sin10θ+3.sin8θ+1sin4θ+2sin2θ−2
=[(sin4θ)2+3.sin6θ−(sin4θ+sin2θ)+(sin2θ)3]+2(sin4θ+sin2θ−1)
=(sin4θ+sin2θ)3+2[sin4θ+cosθ−1]
(Using (a+b)3=a3+b3+3ab(a+b) using (2) from above)
=[(sin2θ)2+sin2θ]3+2[(sin2θ)2+cosθ−1]
=[(cosθ)2+sin2θ]3+2[(cosθ)2+cosθ−1]
(using (2) from above)
=(cos2θ+sin2θ)3+2cos2θ+cosθ−1
−(1)3+2(1−1)
(using cos2θ+sin2θ=1 from equation (a))
=1+2(0)
=1+0
=1
=R.H.S