wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+cos2θ=1, prove that
sin12θ+3sin10θ+3sin8θ+sin6θ+2sin4θ+2sin2θ2=1

Open in App
Solution

Given cossin10θ+cos2sin10θ=1(1)

cosθ=1cos2θ

cosθ=sin2θ(2)

Now, to prove

sin12θ+3.sin10θ+3.sin8θ+2.sin4θ+2.sin2θ2=1

L.H.S=sin12θ+3.sin10θ+3.sin8θ+1sin4θ+2sin2θ2

=[(sin4θ)2+3.sin6θ(sin4θ+sin2θ)+(sin2θ)3]+2(sin4θ+sin2θ1)

=(sin4θ+sin2θ)3+2[sin4θ+cosθ1]

(Using (a+b)3=a3+b3+3ab(a+b) using (2) from above)

=[(sin2θ)2+sin2θ]3+2[(sin2θ)2+cosθ1]

=[(cosθ)2+sin2θ]3+2[(cosθ)2+cosθ1]
(using (2) from above)

=(cos2θ+sin2θ)3+2cos2θ+cosθ1
(1)3+2(11)

(using cos2θ+sin2θ=1 from equation (a))

=1+2(0)

=1+0

=1

=R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon